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ABSTRACT

Linear optimal regulator theory is applied to a nonlinear simulation
of a transport aircraft performing a helical landing approach. A closed
form expression for the quasi-steady nominal flight path is presented
along with the method for determining the corresponding constant nominal
control inputs. The Jacobian matrices and the weighting matrices in the
cost functional are time varying. A method of solving for the optimal
feedback gains is reviewed. The control system is tested on several
alternative landing approaches using both three and six degree flight
path angles. On each landing approach, the aircraft was subjected to
large random initial state errors and to randomly directed crosswinds.
The system was also tested for sensitivity to changes in the parameters
of the aircraft and of the atmosphere. Performance of the optimal
controller on all the three degree apprcaches was very good, and the
control system proved to be reasonably insensitive to parametric uncer-
tainties. It did not perform as well on the six degree approaches, and
a modification to these flight paths is proposed for the purpose of

improving performance.
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INTRODUCTION

Aircraft traffic in the neighborhood of commercial airports
has been the subject of intensive study during the past several
years. Noise, collision avoidance, airspace congestion, air
pollution, and dangerous wing tip vortices are all problems which
are being studied by engineers today. In the present scheme, air-
craft are typically sequenced to folilow one another down 8 three
degree flight path on a straight-in approach to the runway. This
path very often results in low altitude flying at relatively high
pover settings over residential or densely populated business
districts which is objectionable, at least from a noise standpoint
if not from the standpoint of safety. Recently, steeper, six
degree flight paths and two segment approaches (Ref. 12) have been
proposed to eliminate these problems and are currently being tested.
This paper proposes an alternative to these landing approaches. It
consists of descent along & helical path to a low altitude where
the straight-in approach is intercepted and followed. This flight
path has the advantage of keeping the aircraft at low power and at
relatively high altitude except in the immediate area of the airport.
The helical path is quasi-steady in that the flight path angle and
velocity are maintained constant during descent and the conirol

inputs are fixed except to null flight path errors.



Implementation of the proposed automatic guidance system
requires two factors which are not at present universally available.
The two factors are an on~board flight control computer and a
fairly precise knowledge of the aircraft's position in space.
However, with the advent of automatic landing systems, flight
computers are becoming much more common on commercial transports
and the current installation of the microwave landing system (MLS)
equipment at airports throughout the country will make the necessary
position data available (Ref. 12).

The method proposed in this paper uses the theory of optimum
control which is treated in references 1 through 5. The theory is
applied to a three degree of freedom nonlinear aircraft simulation.
In order to pose the problem as a linear regulator, the equations
were linearized about a nominal state (heljcal path) and cuntrol
trajectory. The resulting near optimum feedback control gains were
then tested in the nonlinear model. This work is an extemsion of
that presented in references 6 and 8. The extension includes
increasing the number of states to six and the number of controls to
three. The additional states removes the restriction that altitude
be monotonically decreasing and the inclusion of thrust, autothrottle,
as a control, allows treatment of aircraft other than gliders.
Reference 6 concerns itself with a HL-10 lifting body reentry vehicle

nnd reference 8 with an unpowered Boeing TOT with no external wind



disturbances. Another extension of this work is inclusion of the
quasi-steady helical path with its consequent piecewise constant
control inputs. This factor greatly reduces the problem of computer
storage of the state and control trajectories. The method for
computing these quasi-steady paths along wii. the method for
computing appropriate control inputs are presented here. In addition,
a derivation of the equations of motion is given, along with the
method of solving for the near optimum feedback gains. It should be
noted thet this study, as do references 6 and 8, uses angle of attack
and bank angle as control inputs. This is a simplificec.ion of the
dynamic model which does not include control surfaces such as
elevators, ailerons, or rudder.

Feedback gains were obtained for several candidate approach
paths including both three and six degree flight path angles and turns
of 180, 270, and 360 degrees. An overhead approach was the principal
path studied, i.e. one in which the aircraft crossed over the runway
at a ninety Jegree angle heading east at an altitude of 550 meters.

At about 1800 meters east of the runway center line it intercepted
the helix and descended down it, making a total turn, to the right,
of 270 degrees. The turn wacs completed at an altitude .f 100 meters
wvhere the aircraft intercepted the stiaight-in approuach. At this
time, it was about 1900 meters from the touchdown point on the runway.

The plane continued to descend until, at twelve meter altitude; it



executed a flare maneuver. The effectiveness of the comtrol system
was tested in the nonlinear simulation by introducipg initial errors
in the states, crossvinds, and uncertainties in the aerodyramics
of the aircraft.

The aircraft treated in the study is a Boeing 737-10G, which is
a two engined small commerciesl transport used for relatively shcrt
haul flights. Langley Research Center has recently procured one of
these aircraft from Boeing and it is being used to study and test
advanced automatic control and avionics concepts in the neighborhood
of the air terminal. Whereas the results presented in this paper
show feasibility, it is hoped that they will be applied first to a
more sophisticated six degree of freedom simulation of the aircraft,

and then eventually to be tested on the aircraft itself.



ABRALYSIS

Introduction

The purpose of this section is to present the mathematics
involved in simulating the aircraft and in implementing the feedback
control law. Notice that in figure 1, the aircraft is modeled by a
set of six nonline.r ordinary djifferential equations represented by
the single vector equation

< = T(x,u,t) (1)

This set of equations was integrated mmerically using a fixed step
fourth order Runge Kutta algorithm. The feedback coatrol law used
in this study requires that the nominal state trajectories, ;n’
the nominal control time histories, u_, and the feedback gain
matrix, K, be stored in an on-board computer. However, it will be
shown that by choosing particular nominal trajectories, the vector
G. changes only twice, and the vector ;R is a simply computed
anrlytic vector function of time. This eliminates some of the
on-board storage requirements and makes the control system simpler

and more flexible.

As simulated, the aircraft has six state variables and three
control inputs defined as
T=lxyzvyyl

%= [a¢ /m]T



i" f(x,u,t)

Figure 1.-

Schematic Diagram of Aircraft Landing
Simulation,




The state vector x is made up of the variables x, y, and z
describing the aircraft's position; V, its velocity; vy, its

flight path angle; and Y, its track angle. The control vector

u is made up of the angle of attack, a; the roll angle, ¢; and the
ratio of engine thrust to aircraft mass, T/m. The two perturbation

vectors 6x and Gu, shown in figure 1, are defined as

=x-X

&x "
®-3-3
u n

However, in practice, u is computed as:

Tu = K5x (2)
where K is a 3x6 time varying gair matrix. This gai. -atrix is the
solution of the regulator problem which results from linearizing
equation 1 about the nominal flight path and control vector, and it
is precomputed for a particular nominal flight path. This
linearization yields:

dx = A(t)8x + B(t)8u = [A(t)+B(t)K(t)]8x (3)
where A{t) = %§ evaluated at x = ;; and u = :; and B(t) = %E

evaluates at x = ;; and u = L Adsa 6x6 matrix and B is a 6x3
matrix. A statement of the regulator problem is then to find K in
equations 2 and 3 which minimizes deviations of the states from
their nominal -ralues by using controls which stay within acceptable
limits. More formally, the problem is to determine K which

minimizes the quadratic performance index J given by

t
J =T (b MBx(t,) + %j T [8x(e)Qx(e) + Tule)RBult)la  (4)
(4]

subject to the constraints of equation (3). M, Q, and R are weighting

matrices.



Equations of Motion
The inertial axes system (x, y, z) has its origin at the
iesired touchdown point on the runway. The x axis is parallel to
the runway and is positive in the direction of landing. The y axis
is horizontal, perpindicular to the x axis and is positive to vLhe
right. The vertical z axis is perpindicular to both x and y, and
is positive downward. The aircraft is treated as a point mass,
subject to the forces of gravity, engine thrust, and aerodynamic
lift and drag. The rotating axis system associated with the aircraft
is chosen such that its x axis is always alined with the aircraft's
velocity vector. Two Euler angle transformations relate the
inertial axis system to the rotating axis system. They are
[ cos y sin 0]
Ty = J-sin ¢y cos ¢y O
0 0 1
anA
cos Y 0 siny
Ty = 0 1 0
[-sin Y 0 cos Y]
These rotations are shown in Figure 2. This axes system does not
rol. with ti- aircraft. Therefore, the y body axis remains
horize~*el and the z body axis stays in a vertical plane with the
velucity vector. The rotation vector resolved along the rotating
axes system is
w=[ysiny, =¥, § cos y)*

and the velocity vector is

F=[(v o o



Vertical

| _~———— Plane Containing
Land V
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Center of \
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Vertical
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Yl
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\r" Runway
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Figure 2.~ Rotating Axis System.
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The forces acting on the aircraft resolved along the rotating axes are

Drag = (-0 o o)T
Thrust = [Tcosa O ~Tsinal®
Gravity = T Tw [0 o mS]T
Lift = 1, [0 o0 LT
where T¢ = 1 0 0
0 cos ¢ -sin ¢
0 sin ¢ cos ¢

The 1ift force is perpendicular to the velocity and rolls with the
aircraft. The transformation T¢ resolves this force along the y and
z rotating axes. The angle of attack, a, is defined as the angle be-
tween the velcocity vector and the x body axis of the aircraft. The

dynamics of the aircraft are then described by equating the change in

linear momentum to the sum of the applied forces
m(V+wxV) = Drag + Thrust + Gravity + Lift
or

v 0 -D Tcosa mg sin Y 0
m{0] + m|vicosy] = | o} + | o + 0 + | Lsing
vy

0 0 ~Tsina mg Cos Y ~Lcos¢

To facilitate integration of these equations, they are written with
the derivative of the states V, Y, and Y on the left hand side.
These three equations are combined with three kinematic relations

which resclve the velocity along the x, y, and z inertial axis

x Vv
=11t o
. Yy

2 0

The six equations of state are then
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x = V cos Y cos ¢

5 =V cos Yy sin ¢

z = V sin Y

. (5)
V= <D/m + (T/m)cosa + g sin y

Y = =(T/mV)sina + (g/V)cosy-(L/mV)cos¢

¥ = Lsind/(mVcosy)

Equation 5 is the expanded form of equation 1.

Aerodynamics and Aircraft Parameters

The aircraft simulated in this study is a Boeing 737-100 whict.
is a small two-engined transport airplane designed primarily to
operate from short runways over relatively short distances. It is
described in references 9 and 10. The equations for the 1lift

and drag forces are

L=gqg38 CL

D=g 38§ CD
wvhere CL and CD are the coefficients of lift and drag, respectively;
S is the wing reference area; and q is dynamic pressure, CL’ CD’ and

q are defined as

- i
€ = Oy )185
. 42
Cp = cDO + n[CLG(a.ao)IBO] (6)
and q=1/2 OV2

The assumption of a parabolic drag polar where the induced drag is a
quadratic function of the 1ift coefficient is not restrictive for the range

of speed and angle of attack employed in this study.
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Air density, p, was approximated by the following equation taken from
reference 8.

p = 1.22[1.-(2.257;;10’5)11]"‘255 (1)
This proved to be a very good approximation to the standard
atmospheric density of reference 7. The airplane was configured with
the landing gear down and the flaps deployed at 40 degrees. The
parameters of equation 6 (CL y O . CD , and n) were chosen to fit
data on C. and C_ provided b; Boeing ?or this configuration. The

L D

parameters of the aircraft are listed in Table 1.

Nominal Flight Paths

The nominal path can be chosen gquite arbitrarily nen applying
the linear regulator method to the aircraft landing problem. However,
practical considerations lead one into choosing a particular class of
flight paths. The most common approach used today on commercial
transports is the 3° nondecelerating straight-in approach. That is,
the pilot lines up with the runway and then descends at constant velocity
along an equilibrium path which intersects the horizontal at an angle
of 3°. The control inputs are nearly constant varying only to offset

atmospheric disturbances. A mathematical description of this path is

- T
x = [Vocosyo 0. Vsiny 0 0 0]

-— T
x(0) = [xo 0z, V) ¥, 0]

At approximately 12 meters altitude, the aircraft leaves this quasi-

steady condition and flares in order to touch down more smoothly. This



TABLE 1 ~

VALUE

7.162
-10.k4°

.157
.0314
91.0k M2

40,823, Kg.

13

PARAMETER_DEFINITION

Lift curve slope
Angle of attack for zero lift

Drag coefficient for zero lift
Efficiency factor
Aerodynamic reference area

Mass of vehicle

Characteristics of the 737-100 (Gear Down-Flaps at 40°)
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path calls for constant control inputs and because of ite simplicity,
it requires very little storage. If the nominal path had been chosen
arbitrarily, the six states and three controls would have had to
have beer, stored for many points along the path.

In order to relieve airport noise problems and to decrease
traffic congestion in the neighborhood of the airport, various other
approaches have been proposed and are being tested. These include
the steeper 6° nondecelerating straight-in approach and a combination
of the 6° and 3° approach. The method propr od in this paper is a
Quasi-steady helical approach. All other quasi-steady motions of an
aircraft are spec.al cases of this generalization. That is, the
nominal path is descent along & helix from some initial altitude.

The centerline of the runway is tangent to the helix and at some
specified lower altitude, the aircraft follows this tangent into a
straight-in approach. By making the assumption that atmospheric
density is constant over the range of altitude considered, this path
calls for fixed controls during the helical descent, and fixed but
different control inputs during the straight-in portion. The
variation in atmospheric density in this range of altitude is about
four percent. The assumption of constant density is made during
calculations of nominal path, nominal control inputs, and feedback
gains. During the simulated flights, using the closed loop control
system, atmospheric density is allowed to vary according to equation
T. The small error introduced by this assumption was nulled out by
the control system as though it were an external disturbance. A more

formal description of the nominal path is



15

rvocosyocosw r&a‘
Vocosyosinw Ve
. V_siny z
- _ o o o
X = 0 x{0) = vo (8)
0
. Yo
v v
o
e P B_.OJ
for the altitude range
“2gy LB L -2,
where =~z is the altitude at which the aircraft rolls into the

SI

straight-in approach. The parameters 2,9 2g7° Vo’ Yo and wo are
chosen with some degree of latitude and they essentially determine
the nominal flight path. The last three parameters, Xys Yoo and @o
are functions of the first five and are chosen such that x, y, and ¢

have the desired values when z equels z The subscript SI will be

SI’

used to specify the value of a state when z equals 2 Because the

sI’

origin of the axes system is at the touchdown point on the runway,
the desired values of wSI and ygp are zero. In order to determine
XSI’ it is necessary to look at the nominal path after it starts the

straight-in approach. Its description is

- T
x = [Vocosyo 0 Vosiny, 0 0O 0]

. (9)

x(tgp) = [xgp 0 2zgp Y, v, O]

During this part of the flight x and ; are constant and consequently,

dx _ ax

—

az _
az ~at / at T oY,

is constant. In order to touch down at the origin,
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dx

Xs1 * 251 az

(10)

Xgp = Zgr/teny,

Also, during the helical descent, the rate of turn, &, and the rate
of descent, 5, are constant. In order to have the aircraft flying

in the correct direction (y=0) when z equals Zgys it is necessary

that
2n=-
% = 2 (11)
SI o
and since
dt dz dt
it follows that
W = { 2T=th
wo - -Q VosinYO (12)
SI zo
The axis of the helix is vertical at
(x,5) = (xgq,7)
where :.he -adius r is given by
= 172
r l-/(tanYo dz) (13)
and tirough geometrical considerations
%, = Xgp + 1 8in Y (14)
¥y = rllecos ¥ ) (15)

A short example may clarify these computations. Let the landing
direction be north, (y=0), and the aircraft's original heading be

east, (wo-%). The velocity is 62 meters/second and the flight path
angle is 3°, (%6). Initial altitude is 450 m. The aircraft descends
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along a helical path to 50 m. altitude and then down a

straight path to the runway. In this example,

z, = =450 m., g1 = ~50 m., v, = 62 m./sec
= 30 = I
Yo =180 ° wo 2
Xgp = zSI/tan Y, = -50/tan(%%6) = =95k.q.
¥ _ oMy _ 3n - 3m_ =
az = ——2-7 3504550 - Bop 012 Ted/m.
s "o
&0 = %%-%% = (%%6)(62)sin %%5 = ,038 rad/sec
» = ] cy- = . Li ~
: ¢=/(tanyo dz) 800/(3m-t 180) = 1620.m.

X X

o = %g; ~95b + (1620, in(—5-) = 666.m.

+ r sin wo

"
1]

1620.m.

y r(l-coswo) =r

Q

Integration of equation (8) gives the following state

trajectories along the helix.

_xa- ']VOCOSYO/&O)(SiHW‘Sinwo)W
Yo (Vocosyo/ﬁo)(coswo—cosw)
_ z (V_siny_ )t
X = ° + OS nYo (16)
v 0
o
Yo 0
_,wo.-d L. wot -l

Likewise, integration of equation (9) yields the state trajectories

along the straight portion of the flight path
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1 - Y
P‘SI vocosyo(t ‘sx)
0 0
_ 2o v siay (t-tg,)
x =1y + o (a7)
o
Yo 0
h) 4]
L | N

The time for the wings level maneuver, tSI’ is given by

t., = (z

S1 Sl'zo)IVOSinYo (18)

In summary, the need tc irtegrate and store the equations of
motion for the nominal path has beer eliminated. Given a particular
input parameter set, {zo, 2g1s Vor Yoo tc], equations (16) and (17)
Yield the value of the states at arny time. Five secondary parameters,
[xSI' io, X s Vs tSI]’ necessary to evaluate equations (16) and
(17) are given as functions of the input parameters by equations (10)

through (15) and equation (18).

Nominal Control Inputs
After specifying this particular class of nominal flight paths,

it is necessary to make their equations of motion which are given by
equations (8) and (9), agree with the equations of motion for an
arbitrary path vhich are given by equation (5). This is accomplished

by choosing the correct open loop : .irol vector, u. Because the
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path is juasi-steady, thai is,

V=y=0
v =9, h > -z,
=0 -
v b < -z4;

u is a constant vector on the spiral and a second constant on the
straight-in portion. In order to make equation (5) agree with
equation (8), the following equations must be satisfied.

Dy/m - (T/m)cosa - g sin Y, =0

(T/mvo)s1nu - (g/Vo)cosyo + (LN/mvo)cos¢ =0 (19)

0

@o - Lxsin¢/(mvocosy°)

In these equations,

Ly =ay S Cp
Dy = 9y 5 Cp
wvhere
2
q = 1/2 ORVO

and CL and CD are defined in equation (6). Using the assumption of
constant air density discussed earlier, an intermediate value of
altitude, hN’ is chosen, and Py is computed using equation (7).
That is,
Py = 1.22[1.-(2.257:10-5)hN]h'255
The open loop control,';,
u = [a, ¢, '1‘/m]T

which is the solution of equation (19), is not unique and these

equations have no closed form sclution. Equation (19) is of
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the form

and it was solved by the Newton-Raphson iterative method described
in reference 11. This method usually requires the Jacobian matrix

wvhich is given by

[sa~ + Tsina}/m 0 ~cosa
T, (e/av JcosareFeose/ (ay ) ! -
= =§ (T/mV )cosat= cos¢ wv —Lnsln¢/(mvo) 51nn/Vo
Loty
Ls;—s1n¢/(mvocosyo) -LNcos¢/(mVocosy°) 0 )
Ly
vhere =
— = WOTEC,
BDN
and 3o 29,8 (180) C n(a-a )

Ly
The possibility always exists that this algorithm will converge
to an undesirable value of u. Physically, the smalier value of angle of
attack is desired. This corresponds to the low side of the lift/drag
curve. Therefore, the solution must be examined subjectively before
being accepted. A practical way to avoid this problem is to start the
iterative procedure close to the desired final solution. A suggested
method of doing this is to make the assumption that engine thrust is
alined with the velocity vector of the aircraft. W ‘'h this assumption,
vwhich is in error by the size of the angle, alpha, equation (19) becomes
DN/m -T/m - g sinyo =
—(S/VO)cosYo + (LN/mVo)coso =

¥y - LNsin¢/(mV°cosY°) =
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These equations have the following closed form solution which can
be used as a starting point in the Newton-Raphson algorithm. The
solution is
-l .
¢ = Tan “(V ¥ _/g)
a=a + (180/1r)(l¢coeyo)/(qn8 Clucoao) (20)

T/m = DN/n - gsiny

In order to solve for the open loop controls for the straight-in
portion of the nominal flight path, the following equations must be
satisfied. They result from making equation (5) equivaient to
equation (9).

DN/n - (T/m)cosa - gain'vo =0

(1)
(T/mvo)sina - (g/Vo)cos‘yo + (LN/mvo) =0

Again, the Kewton-Raphson algorithm is used to solve the two equations
for a and T/m. The roll angle, ¢, of course, is zero. Using the same
assumption that thrust and velocity are codirectional, the following
equations can be used to start the iterative procedure.

)+ a

a= 180.mgcosy°/ (mgS C
W (22)

T/m = Dn/n - gsiny

Notice that Dl! in equation 20 will have a different numerical valae
than Dl in equation 21. These equations used for starting the Newton-~
Raphson iteration procedure yield values which are very close to the
final values.
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Feedback Control Gains

The purpose of this section is to present a development of the
solution of the linear regulator prcblem. References 1 through 5
all concern themselves, in part, with this problem. A staiement of
*he problem is given ty equations (1), (3), and (&), which are

repeatel Lere for convenience.

= TIX,u,t) (1)
5% = A(t)8x + B(t)6u = [A+BK]éx (3)

= l—;T(tf)ME;(tf) + %{f 3 (£)@x(t + Su (t)RBult)at (L)

A(t) and B(t) are defined as

e

af 3
A= x B = u

M, Q, and R are veighting matrices which must be selected by the
control system designer. The problem is to find the matrix K in
equation (3) which minimizes the quad-atic performance index of
equation (4). Following the techr.ques of references 1 and 2, the
Hamiltonian of the system is

H= L _TQSx + 1 6u Réu + (AGx) p+ (B(Su)

where 5 is the vector of costates. S is the solution of the
differential equation

- ‘ﬁ%%’ = -@x - Ap (23)

Since the control is optimal, it follows that

e

JH

a(du) 0
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or
OH _ _ 5y + BTp =
3w TR BRSO

Solving tais equation for 3;, we get

3u = -R 187 (2k)

.
Obviously, the control weighting matrix R must be nonsingular.”

Combining equation {2%) with equation (3) yields

3x = ASx - BRIBTp (25)
Then, combining this equation with equation (23), we have the

following system of equations.

e - —
| & A -BrIBT|) o
§ . =

B

(26)

T —

L"Q -4 L P

Applying the transversality conditions, we get the costate vector

p(t) at the final time, t..

f
—JI‘—-—
- _ 1 98x Mdx _ o
p(tf) =3 SE;T:;T = H&x(tf) (27)

The system represented in equation (26) has twvelve states. Since
there are six initial conditions on E;; and six final boundary values
on E} this system has a unique solution.

If equation (26) is rewritten as

& =
| == z| _
L p P

and if ve assume that Z is constant over a small interval of time,

[t,t+h], then we can write the transition equation of the system as

1Reference 1 shows that M, Q, and R must be symetric; that M and Q must
be at least positive semidefinite; and that R must be positive definite.
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8x (t+h) dx(t
(=] - aca[&Y)] (28)
where
Q(t,n) = e2(t)h o [Qn “12] (29)
an n22

A further assumption is made that the costates are linearly related

to the states; that is,

p(t) = 5 8x(t) (30)

This assumption is proven to be true in reference 1. A comparison
of eguation (27) and (3C) shows that

5,(t) = M (31)
Combining equations (28), (29), and (30) yields a transition

equation for Sl

Sx(t+h) _ Bx(t)
[sl(m)mm)] = fle,n) [sl(t)mt)]

5, (t+4B)[8 40,5 (£)IR(t) = [, 40,5 Tx(t)

11 1271 21 22

or

s (t+h) = [0 s,(6)1[0,,+6, 5, ()7 (32)

21 22 1
Reference 1 proves that this inverse does exist.
Using the difference equation (32) with the final value of the

matrix Sl given by equation (31), we can proceed backward in time and

obtain Sl for all te[to,t ]. At each point in time, it is necessary to

f
compute {i(t,h) as a function or A(t), B(t), R, and Q, using equations



25

(26) through (29). The gain matrix K(t) is obtained by combining
equations (30) and (24).

Tu = R %

T——
B SIGx(t)
or

K(t) = —R-lBTsl (33)

Implementation

The landing approach guidance scheme proposed in this paper
would be implemented in the following manner.

1. For a particular nominal flight path, the control system
designer, after extensive analysis and testing, chooses weighting
matrices M, Q, and R for the performance index in equation (4).

2. The state trajectories on the nominal flight path are then
computed using equations (10) through (18).

3. The nominal open loop control inputs are then computed using
the Newton-Raphson algorithm to solve equations (19) and (21). This
iterative procedure is started with the values given in equations (20)
and (22), respectively.

4. ™he Jacobian matrices A(t) and B(t) used in equation (3) are
computed according to equations (A-1) and (A-2) in appendix A. Equation
(3) represents the linearization of equation (1) about the nominal
trajectory and control.

5. The feedback gain matrix K is computed as a function of time
using equations {26) through (33).

6. In the computer aboard the aircraft are stored the time his-

tories of the nominal flight path, the nominal control inputs, and the
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feedback gains. Alternatively, the algorithm, equations (16) and (17),
which computes the state trajectories is stored.

7. The aireraft, or simulated aircraft, is flown into & window;
i.e., a region of state space which is 'close' to the initial states
of the nominal flight path.

8. When the plane enters the vindow, it is switched on to the
automatic landing system. It is assumed that the aircraft is
receiving the necessary position data from the ground based asirport
landing system and receives control surface positions from transducers.
This is considered time zero with respect to the nominal path.

9. The control system smoothly nulls the state errors and brings
the aircraft safely onto the nominal flight path well before reaching

the decision altitude.



RESULTS ARD DISCUSSION

Flight Paths

In this study, the control system was tested along seven
different nominal flight paths. The paths differed in initial
altitude, initial heading angle, and in angle of descent. Flight
paths 1, 2, and 3 are depicted in Figure 3. They all have a three
degree angle of descent (flight path angle) and are initially hesded
north, east, ana south, respectively. Flight path 1 is the
easiest path to fly because its initial altitude is the highest and
there is more time to null out initial errors in the state variables.
Conversely, flight path 3 is the most difficult since its initial
altitude is 150 meters below flight path 2 and 300 rieters below
flight path 1. The aircraft mukes a descending turn to the right
of 360, 270, and 180 degrees for flight paths 1, 2, and 3, respectively
at which point it is headed north toward the runway. At this position
(roll out) on the path, the aircraft is at 100 meters altitude and it
rolls to a wing level attitude. It then descends in a straight linue
toward the runway. The flare maneuver would be executed at twelve
meter altitude for the purpose of softening the impact at touchdown.
Because this simulation did not include ground effects, it was
terminated Just above the flare altitude and off nominal errors
recorded at that point.

Flight paths 1A, 2A, and 3A had the same initial altitude and
heading angle respectively as flight paths 1, 2, and 3. However,

they had a descent angle of six degrees rather than three. These

27
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flight paths are more difficult to fly than the first three. The rate
of descent and roll angle are about doubled and the turning radius

and flight time are about halved. The rolloul altitude wes maintained
at 100 meters. These flight paths require more severe control inputs
than the first three and they have less time to null off-nominal
errors.

Flight path 3B is s variation of 3A. The initial altitude and
rollout altitude were raised 100 meters. This had the effect of
moving the helix back from the runway and about doubling the time
spent on the straight-in portion of the path. Parameters of the

seven flight paths are given in table 2.

Design Considerations

The control task presented here differs from conventional landing
approach schemes in that errcrs are taken with respect to a moving
point in state space rather than a fixed line. Thus, even if the
aircraft were flying on the correct helical path ' ith the correct
attitude, the fact that it was late or early in time would indicate
to the con*rol system that there were state errors; in this context,
the proposed guidance scheme can be considered L-D. At crowded
airports, more precise contro' of time sequencing should prove
advantageous.

Because the feedback gain matrix K is computed automatically in
a near optimum fashion, th: designer's job is to choose the weighting
matrices M, Q, and R of equatiur 4 and then to evaluate the subsequent

performance of the control Jystem. In fact, this becomes an iterative
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procedure where the designer is trying to find an optimum cet of
weighting paraneters. Tnis task is not trivial, but by using
diagonal weighting matrices, a functional relationship between tleir
elements and the subsequent performance can be established.

The control system was required to null out initial errors in
the states, and to offset the effects of steady crosswinde. It wac also
desired that it not be sensitive to normal changes {- the atmosphere
and uncertainties in tne aircraft's acrodynamics. Wind gusts and
sensor noise were not considered in this study. Large initial state
errors tend t» demand large rapid control motions. In order to avoid
th.s, state errors ar~ weighed less by reducing the elements of Q and
control excursions are welghed more by increasing the elements of R.
However, the penalty functi~n does not include control rates and the
R matrix influences tne time integral rather than the magnitud- ~f
control excursion squared. Therefore, it is not unusual t¢ ... . .cg8e
control excursions for relatively short time with ccnsequent high
control rates. If the Q and R matrices are well chosen, the contrcl
system will null out the initial errors slowly in a manner which will
cause no passenger discomfort. As the aircraft approaches the
touchdown pouint, the influence of the M matrix tightens up the cocntrol
and acceptable values of final state errors can be achieved.

This approach worked fine until the aircraft was subJected tc a
crosswind. It then became apparent that control in crosswinds was a
much mcre stringent requirement and thet a tighter control was
necessary. In order to rzconcile the two requirements: wide

bandwidth control for crosswirds and nsrrow bandwidth control for
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large initial errors, two approaches were taken. First, high gains
vere used, but rate and pcsition limits were placed on the contrcls.
This lead to undesirable oscillatory behavior, and ir some cases,
instability. The rate limit on angle of attack seemed to be

pa icularly troublesome. The second approach was to make the
elements of Q and R time varying. In this method, the feedback gains
are low initiaily, vhile the state errors are large. While the large
errors are being nulled, the feedback gains are gradually increaéed
and the system is reasonably tight when it approesches touchdown.

This second method works well except that roll rate became excessive
vhen the aircraft rolled out of its turn. This maneuver occurs at
100 meters altitude when high feedback geins are desirable. This
proolem was circumvented by imposing a rate limit oa roll. The

values of Q, R, and M which vere finally settled upon are:

GxQ (o] 0 0 0 0
-2
0 GyQ 0 0 0 0
0 0 5252 0 0 0
Q=1/2t, -
0 b 0 CVQ 0 (o]
-2
0 0 0 0 qu 0
-2
LO 0 0 0 0 G*Q
GaR 0 0
R=1/2t, | 0 &4, 0



Gx;e 0 o 0 0 0
o Gyga 0 0 o 0
‘- o 0 62;2 e 2 c )
0 0 0 5v; 0 )
0 0 0 0 “7;2 0
C o 0 0 0 éwgz

where the value of the elements are given by

qu = 1140.—85.1:/1:f

g = 1L0.-131.t/t,

6zQ = 31.-26t/+.f

SVQ = T0.-b9.t/t,

Yy = 3.(w/18C.)

Sy = (7.-6.t/x }(n/180)
GaR = 3+12t/tf

St = (1.77/180)(31+t/t )
S(T/M)p = .1T+.1Tt/t,

GxM = 55,

GyM = 9,

GZM = 5.

GVM = 21.

GYM = 2.(m/180)

éwM = m/180

These weights are by no means optimally chosen. They are arrived at

experimentally by using the iterative process described above.
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There are several constraints imposed upon the design. To
avoid passenger discomfort, angular rates should not exceed ten
degrees per second and by federal regulation, roll angle cannot
exceed thirty degrees. Engine thrust can be throttled between 2800
and 28,000 pounds which correspond to thrust/mass ratios of .3 and
3. meters per second squared. Final errors in the states will be a
function of how well the weighting matrices are chosen, the magnitude
of the initial state errors, wind velocity and direction, and of the
particular flight path chosen. After the wings level maneuver the
aircraft is headed north at about 62 meters/second, and since the
runways are normally much longer than necessar; for this aircraft,
an error in x of + 62 meters is not unreasonable. However, errors
in y of greater than + 10 meters are unacceptable. The fact that the
runway is normally only 50 meters wide and the wing span is approxi-
mately 30 meters make even that error uncomfortable even though some
correctiorn will be made during flare. Errcrs in velocity V and
flight path angle Yy are best viewed in terms of sink rate ﬁ
(Z =V sin y). This error shouid be kept within + .7 meters/second
and again a negative error (slower descent) is preferrad. Error in
heading should be kept within five degrees. An error of that
size can be nulled by a decrab maneuver. The most trouble-
some errors in this study turned out to be in y during the six degree

approaches.

Representative Landing Approach

Time histories from a representative flight are shown in figure L.

The nominal curves are shown as dotted lines and the simulated flight
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as a continuous curve. This was a six degree approach with nominal
initial heading due east and initial altitude of 550 meters. The
six states and three controls are shown, along with an overview of
the x-y plane. The aircraft started wings level with a heading of
80° {10° error). It was 100 meters higher than nominal and had

over a 300 meter error in both x and y. The velocity was low by
abcut twenty percent. The aircraft was near stall, and consequently,
the angle of attack and throttle setting were set high for trim.

It was subjected to a fifteen knot constant east wind. Immediately,
the aircraft rolled with some overshoot to the 23° nominal. The
angle of attack was decreased and the throttle was cut back. This
made the aircraft simultaneously pitcl over and increase speed

wvhile initiating its curved descending turn to the right. The roll-
out at 100 meters aititude is apparent in the curves of y, psi, and
phi. The entire approach lasted about B2 seconds and rollout
occurred at around TO seconds. The simulation was terminated when
the plane reached an altitude of around 15 meters just above where
the flare would be executed. Most of the motion is smooth but roll
angle rate definately reaches its ten degree per second limit and the
thrust to mass ratio stays on its lower limit of .3 (T = 2800 1lbs.)
for much of the run. The overshoot in roll angle (-10°) at rollout
is undesirable, but is much less apparent in the three degree
approaches. It could, most likely, be considerably reduced by making
the nominal roll angle a continuous function. However, this would
complicate (perhaps unjustifiably) the entire control system. At

decision height, the aircraft was within one second of the nominas.
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Final errors for this fiight are -52m., 3m., -.6m., 3 m./s., -1°,

.5°%, and -.Sm./s. for x, ¥, Z, V, Y, ¥, and Z, respectively.

Representative Feedback Gains

The elements of the feedback gain matrix, K, for flight path
2A are shown in Figure 5. The magnitude of the gains, in generai,
increase with time due to the time variation of the weighting
matrices @ and R. Some of the gains have a pronounced increase in
the last several seconds of flight due tc the influence of the M
matrix. This can be seen in several of the elements including K(1,1),
K(2,2), and K(3,3). During the straight-in portion of the approach,
ten of the eighteen gains are zero or can be considered zero. Of
course, the more of these elements that are zerc or near zero, the
easier it is to implement the control system. In order to determine
the influence of a particular gain, one assumes a large reasonable
error in *he state and then calculates the resulting change in the
control. If the change is insignificant, then the element can be
considered zero. For example, an error of three meters in Z near
the end of the flight would only change the thrust/mass ratio by .06.
Whereas an error in x of 60 meters would cause the ratio to change by
1.2. Since these are both largec reasonable errors at the termination
of flight, the element K(3,3) should be considered zero. Using this
approach, it can be seen that after rollout, thrust/mass ratio is &
function only of x and V, roll angle is a function of only y and ¢,
and angle of attack is a function of x, V, Z, and y. This partial

decoupling is useful to the designer in the iterative process of
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choosing the weighting matrices. Applying the same recsoning, five
elements of K can be considere/ zero tkroughout the entire flight.
They are K(2,3), k(2,4), K(2,5), K(3,5), and K(3,6). Each of the
remaining 13 gains would have to = stored in the on-board computer.
Eleven points with linear interpolation could easily approximate any
of these functions. Some of them could be fitted by low order
polynomials in time which would require even less parameter storage.
It appears that the entire gain matrix and nominal path .culd be
stored in less than two hund: .3 words of storage. This number could
probably be reiwuced but it is important to realize that any para-
meter change in the nominal state trajectory wil. affect these gains.
Each airport using this system would probably have several different
nominal approaches alL. these would also probably differ among airpor*s.
To be practical then, the computer must have access to the correct set
of parameters out of manLy possible alternative sets. Several
possible ways of accomplishing this are:
1) All necessary parameter sets are stored .n an on-board
mass storage device.
2) The particular set of parameters needed is calculated
on the airborne compute- prior to landing approach.
3) The parameter set is transmitted from the airport to
the on-board computer when the landing approach is
assigned.
L) The feedback gains could possibly be expressed as
analytic functions ¢f time and .he five primary

parameters of the nominal flight path.
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The feedback gains of Figure 5 were calculated using the
ighting matrices M, ¢, and R as giver atove. The gains were used
in the landing approach shown in Figure &. This choice of weighting

matrices and resuiting gains appears adequate for this flight path

and control task.

System Performance

Tne control system was tested on each of the seven landing
approaches described in Table 2. Results from the first six fligh-
patns are given in Table 3 through Table 8. Flight path 3B resul:s
are given in Table 9. Each of these seven tables represent 25
simulated landing approaches. {n each aprroach, the aircraft was
subjected to a constant wind of 15 knots magnitude from a direction
ww. The direction changed tor each approach and it was generated as
a random variable with uniform distribution vetween -180 degrees and
+180 degrees. Each flight path hed its own random sequence of wind
¢ rections with no particular direction being favored. Each apprcach
was started with off nominel errors in all state variables. These
initial errors were generated as random variables. They were nor-
nally (Gaussian) distributed with zero mean. The standard deviations
selected for the six state errors in x, y, Z, V, Y, ¥, respectively,
vere 100m., 100m., 30m., 3m./s., ~’, and 3°. Each flight r th had a
distinct random sequence of sets of .nitial state errors.

The reason for employing randomness in the control task was that
the system showed that it could be tuned to a sarticular task.
Originally, only 90° crosswinds were used because they were thought

to be a worse case. Then it was discovered that winds from the aft
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quarter occasionally gave more trouble. Because this aircraft is
reiatively clean; i.e., high 1lift to drag retio, these winds were par-
ticularly difficult on the steep approaches. Also, certain combinations
of initial errors vere easier to correct than others. Therefore, a
strong wind randomly directed was used and the aircraft was initialized
with large random off-nocminai errors. The controls were initially set
such that the wings were level ($ = 0) and the aircraft was trimmed.
Table 3 presents the data for the 25 landing approaches along
light path one. The first six lines give the measured statistics
of the initial state errors. They are the rean, standard leviation,
and range of initial errors given for each -tate. These statistics
1iffer fror; their ideal values because they represent a subset of a
very long pseudo randcm sequence which has the selected statistics.
The next three lines of the table represent the initial off-nominal
val .es of the controls. These are not really errors, but show a
variation in initial trim values. Roll angle is a constant -12.2°
since the approach alvays starts wings level rather than rolled over
at 12.2°. The next section of the table shows how well the control
system did its work. It gives the final off-nominal errors taken
Just above the flare altitude. Statistics are given on the six
state variables and sink rate, é. As can be seen, the control system
worked very well on flight path one. Poor performance usually makes
itself apparent in final errors in y and Z. For these twenty-five
runs, the approaching aircraft was never more than .7 meters from
the center line of the runway and the final error in altitude was
never greater than 1.1 meters. Since the nominal sink rate is 3.2k

peters/second, the maximum error in final altitude corresponds to
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Variable Mean Standard Deviation Range
INITIAL OFF-NOMINAL ERRORS
x (m) -6.9 6.7 (-146., 119.)
y {(m) -13.0 8k4.5 (-153., 193.)
z (m) -4.1 32.1 (-85., 76.)
V (m/s) .6 2.8 (<k.2, 5.2)
Y (deg) .2 .8 {-1.3, 1.9)
¥ (deg) .5 3.1 (-6.1, 8.6)
a (deg) 1 1.4 (-2.1, 2.7)
¢ (deg) o -12.2 0
T/m (m/s") -.05 .1k (-.36, .20)
FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE)
x (m) -9.3 7.8 {(-21.2, -1.0)
Y (m) 4 .2 (-3, .7)
2 (m) .0 .6 (-.6, 1.1)
V (m/s) .2 .5 (-.3, .9)
Yy (deg) -.0 -3 (-.5, .4)
y (deg) -.1 .1 (-.2, =.1)
Z (m/s) -.01 .34 (-.47, .kb)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT
a (deg) 4.5 .5 (3.3, 5.7)
¢ (deg) 5 -4 2.3 (-2.3, 3.9)
T/m (m/s<) .08 .18 (-.35, .30)
EXTREME CONTROL RATE DURING EACH FLIGHT
¢ (deg/s) b 1.5 (-2.7, 3.4)
(deg/s% 7.9 3.1 (-6.7, 9.4)
/m (m/s>) .00 A1 (-.21, .22)
NUMBER OF UNACCEPTABLE FLIGHTS = O
TABLE 3.- Statistical Data From Flight Path 1.

25 Landing Approaches, y=3°, Z=3.24 m/s, V. =15 knots,
qw=u[-180°, 180°1], t,=211.5s, h.=13.7m, xf=-262m.
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Variable Mean Standard Deviation Range
INITIAL OFF-KOMINAL ERRORS
x (m) 8.4 118.1 (-292., 236.)
y (m) 10.5 93.9 (-199., 179.)
Z (m) 2.3 21.5 (-27., 48.)
V (m/s) .2 2.7 (-4.8, 6.9)
Y (deg) .2 .9 (-1.4, 2.9)
¥ (deg) -.9 2.2 (-5.7, 3.0)
a (deg) 51 1.3 (-2.9, 2.8)
¢ (deg) N -12.2 0
T/m (m/s) -.06 .1k (-.46, .19)
FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE)
x {m) -8.9 6.8 (-22.9, -.k)
y (m) .5 .2 (.2, .8)
Z (m) -.1 .6 (-.7, 1.2)
vV (m/s) .2 .3 (-.3, .9)
Y (deg) -.0 .2 (-.5, .b)
y (deg) -.1 1 (~.2, .0)
Z (m/s) -.02 .29 (-.48, .Lk)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT
a (deg) 2.9 3.2 (-3.7, 6.6)
¢ (deg) b.2 .1 (k.1, 4.4)
T/m (m/s?) .06 A7 (-.35, .29)
EXTREME CONTROL RATE DURING EACH FLIGHT
g (deg/s) .5 2.0 (=3.0, 4.8)
(deg/s-)<l 8.8 T (6.7, 9.4)
/m (m/s>) .01 .15 (-.29, .23)

NUMBER OF UNACCEPTABLE FLIGHTS = O

TABLE h.- Statistical Data From Flight Path 2.
25 Landing Approaches, y=3°, Z=3.24 m/s, V=15 knots,
W,=U[-180°, 180°], t =165.s, h,=1k.bm, x,=-279.m
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Variable Mean Standard Deviation Range
INITIAL OF “OMINAL ERRORS
x (m) 11.1 95.2 (-176., 17L.)
y (m) -12.8 10k.1 (-209., 217.)
Z (m) -2.5 30.8 (-48., 73.)
V (m/s) ~.0 2.1 (-3.7, 5.2)
vy (deg) -.1 1.1 (-1.8, 1.8;
v (deg) b 2.5 (4.1, 6.2;
a (deg) -1 1.0 (-2.4, 1.8)
¢ (deg) 2 -12.2 0
T/m (m/s%) ~.02 .20 (-.35, .29)
FINAL OFF-KOMINAL ETRORS (AT DECISION ALTITUDE)
x (m) -8.8 9.3 (-26.0, 2.2)
y (m) .6 .3 (.0, 1.3)
Z (m) -1 '5 ("Sr 1.0)
V (m/s) 1 .6 (-.7, 1.2)
vy (deg) .0 .2 (-.2, .b)
y (deg) -.1 .1 (-.3, -.0)
Z (m/s) .06 .26 (-.25, .53)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT
a (deg) 2.8 3.1 (-3.8, 71.2)
¢ (deg) o T.- .2 (6.9, 7.5)
T/m (m/s<) .08 .19 (--20, .39)
EXTREME CONTROL RATE DURING EACH FLIGHT
é (deg/s) -2 1.8 (-3.5, 2.6)
(deg/s% 8.3 .9 (6.4, 9.4)
/m (m/s?) ~.00 .13 (-.24, .20)
a——
NUMBER OF UNACCEPTABLE FLIGHTS = O
TABLE $5.- Statistical Data From Flight Path 3.

25 Landing Approaches, y=3°, Z=3.2k m/s, Vw=15 knots
¢w=U[-180°, 180°1], tf=118.5s, h,-15-5m, xf=-296m.
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Variable Mean Standard Deviation Range
INITIAL OFF-NOMINAL ERRORS
x (r) 27.4 112.7 (-219., 276.)
y (m) 13.3 106.0 (-224., 237.)
V (r/s) -1 3.6 (-7.2, 6.L)
Yy (deg) 1 1.1 (-1.5, 2.4)
¥ (deg) -.3 3.3 (-6.8, 6.3)
a (deg) -.5 1.9 (-3.4, 3.7)
(deg) -23~3 0
T/m (m/s ) -.07 11 (-.17, .17)
FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE)
x (m) -10.0 9.4 (-23.6, 8.3)
y (m) 8.1 T (6.6, 9.1)
Z (m) -.6 .6 (-1.2, .T)
vV (m/s) .0 .5 (-1.1, .8)
Y (deg) 1 .2 (-.2, .3)
y (deg) -1.8 .2 (-2.0, -1.4)
Z (m/s) 11 .25 (-.36, .46)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACHK FLIGHT
a (deg) 3.1 3.8 (~3.7, 8.4)
¢ (deg) 19.3 51 (19.0, 19.5)
T/m (m/s?) A7 .1k (-.17, .35)
EXTREME CONTROL RATE DURING EACH FLIGHT
(deg/s) .1 2.1 (-3.4, 3.3)
(deg/s -10.0 0
/m (m/s ool -lo (--18’ 021)
NUMBER OF UNACCEPTABLE FLIGHTS = 0
TABLE 6.- Statistical Data From Flight Path 1A.

25 Landing Approaches. y=6°, 226.28 m/s, Vw=15 knots
ww=u[-180°, 180°], t,=105.5s, h,=19.5m, xf--186m.
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Variable Mean Standard Deviation Range
INITIAL OFF-NOMINAL ERRCRS

x (m) -9.7 89.2 (-235., 147.)

y tua) 20.8 75.4 (-143., 192.)

Z (m) 1.2 26.2 (-k1., 56.)

vV (m/s) .3 3.k (-6.9, 6.2)

y (deg) -.0 .8 (-2.1, 1.k)

v {deg) -.3 2.5 (-3.5, 6.9)

a (deg) -.9 1.7 (-3.6, 3.2)

¢ (deg) > -23.3 0

T/m (n/s) -.07 1l (-.17, .24)
FINAL OFF-NOMINAL ERRCRS (AT DECISION ALTITUDE)

x (m) -L.9 3.0 (-25.%, 7.9)

y (m) 8.4 1.3 (6.5, 10.6)

Z (m) -.h 1.0 (-1.7, 1.3)

V (r/s) -.3 .5 (-1.1, .9)

Y (deg) .0 .3 (=.b, .4)

y (deg) -1.7 .3 (-2.1, -1.3)

Z {m/s) .01 .25 (-.38, .33)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT

a (deg) 3.0 3.5 (-4.3, 6.5)

¢ (aeg) » 13.3 .3 (12.8, 1k.1)

T/m (m/s€) .09 .15 (-.16, .26)

EXTREME CONTROL RATE DURING EACH FLIGHT
a (deg/s) -.1 2.0 (-3.3, 3.9)
(deg/ -10.0 0.
/m (m/s -.01 1 (-.17, .21)

NUMBER OF UNACCEPTABLE FLIGHTS = 5

TABLE T.- Statistical Data From Flight Path 2A.
25 Landing Approaches. Yy=6°, 2=6.28 m/s, V_=15 knots
v,=U[-180°, 180°], t =82.5s, h =15.3m, x =-Yu6.m.
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Variable Mean Standard Deviation Range

INTTIAL OFF-NOMINAL EREORS

x (m) -35.6 88.L4 (-225., 129.)
y {(m) -22.2 89.5 (-266., 81.)
2 (m) -5.2 36.3 (-61., Su.)

V (m/s) 1 2.5 (-6.0, 4.2)
y (deg) .1 .9 (-1.3, 2.3)
y (deg) -.3 2.8 (-5.4, 4.7)
a (deg) -1.1 1.3 {-3.0, 2.4)

¢ (deg) , -23.3 0.

T/m (m/s") -.07 .09 (-.17, .09/

x (m) -21.5 1k.7 (-51.7, 2.k)
y (m) 11.2 5.5 (-6.1, 20.3)
Z (m) -.5 T (-1.8, 1.2)
V (m/s) 1.1 1.0 (-.8, 2.8)

v (deg) .1 2 (-.4, .3)

Y (deg) -2.1 1.1 (-4.0, 1.4)
Z (m/s) 17 .25 (-.22, .57)

EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT

a (deg) .5 4.2 (-k.2, T.4)
¢ (deg) » 21.7 1.0 (19.7, 23.4)
T/m (m/s“) .19 21 (-.17, .55)

EXTREME CONTROL RATE DURING EACH FLIGHT

¢ (deg/s) 1.1 1.8 (-2.0, 5.1)
(deg/s% -10.0 0.
/m (m/s”) .02 .09 (-.15, .15)

NUMBER OF UNACCEPTABLE FLIGHTS = 1k

TABLE 8.- Statistical Data From Flight Path 3A.
25 Landing Approaches. Yy=6°, 2=6.28 m/s, V_=15 knots
v,=U[-180°, 180], t.=59.0s, h =15.m, xf=-1h3m.
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about one third of a second in time. Tuis same cbservation can be
made with regard to x since nominal x is approximately 62 meters/
second and the maximum final error in x for the twenty-five runs
was 21.2 meters. The third section of the table indicates how much
control was needed to fly the aircraft. For each of the twenty-five
approaches, the largest cff-nominal control excursion is identified
vhether it be positive or negative. The initial transient of each
run vas not included since the initial off-nominal values of at
least roll angle would always be extreme for the flight and it
would mask the desired information. So, for example, the average
extreme for angle of attack was 4.5 degrees greater than the nominal
and the extreme varied over the twenty-five fiights from 3.3 degrees
to £.7 degrees above nominal. The next section of the table gives
information on extreme control rates for each run. These are
important mainly in how they affect passenger comfort. The
statistics given are on the extremes of each flight including the
initial transient. Finally, the table gives the number of flights
which w2re unacceptable because one or more cof the constreints,
disrusced :n the sectinn on design consideration, was violated.

43 can bs seen from examining the tables, the control system
vas quite effective on flight patks 1, 2, and 3. The largest fiaal
errors for these 75 approaches was 1.3 meters in y and 1.2 meters
in Z. There were no unacceptable flights and both control
excursion and control rates were moderate.

The next three tables, 6 through 8, show the results for the

six degree approaches. As can be seen, the control system did not
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do as well on these approaches. Final errors in y and § were larger,
and roll angle tended to have larger off-nominal excursions.

Although there were no unacceptable flights on path 1A, the mean
final error in y was a disturbing 8.1 meters. Because the aircraft
did not execute the wings level maneuver fast enough, it tended to

go off to the right (east), and then it would roll to the left in
order to get back on the centerline. On these six degree approsaches,
there was only about 13 seconds from initiation of rollout to the
conclusion of the simulation. Since the variation of the error is
small (.7), performance on this flight path could probably be
improved by starting the roliout a few seconds early. This is, in
fact, what pilots have been observed toc do when flying this approach.
On flight path 2A, performance is slightly worse and five of these
had final errors in y which were greater than ten meters and
consequently were unacceptable. The variation in final y error was
again small, indicating that a slight adjustment in the flight path
could possibly bring the errors within plus or minus 2.5 meters.
Fipally, on flight path 3A, the control system proved to be
completely inadequate with 1k of the 25 flights having final errors
in y which were greater than ten meters. It is possible that another
choice of weights, specifically GyQ and dyM, might improve performance
on the six degree flight paths. However, the principle problem seems
to be one of time. Flight time decreases monotcnically from 212
seconds on flight path 1 to around 60 seconds on flight path 3A. It
appears that the six degree approaches do not have enough time to

null out initial errors and the adverse effect of ~rosswinds. In
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order to support this premise, flight path 3A was modified such that
initial altitude was 500 meters instead of 400, and rollout was
accomplished at 200 mete:s instead of 100. This new flight path is
labeled 3B. Its parameters are given in Table 2 and its performance
is reported in Table 9. 1In order to facilitate comparison of Table
9 and Table 8, the exact same sequences of initial errors and wind
directions were used. The flight time for 3B was about 15 seconds
longer than 3A, and all of this was added to the straight-in portion
of the flight. The marked improvement in performance of 3B over 34
is apparent when Table 9 is compared with Table 8. On 3B, no
approach exceeded the allowable limit of ten meters final error in y;
whereas on 3A, 1b approaches exceeded it. Since this improvement
seems to be caused by the increased flying time, it may follow that
doubling the initial nominal altitude and rollout altitude on the
six degree approaches would lead to performance comparable to that
experienced on the three degree approaches.

Finally, the control system was tested for sensitivity to
uncertainties in the aerodynamics of the aircraft and for normal
variation in the atmosphere. A particular landing approach was used.
Initial errors and wind direction were not varied. Twenty-five
simulation runs were made, each with a different atmoepheric density
function and each with a different set of aerodynamic parameters. The
results of these flights are given in Table 10. All six aircraft
parameters were allowed to vary randomly. The values given in Table 1
vere used as the mean and four percent of those values were used as

the standard deviation. The distribution was normal. This resulted
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Variable Mean Standard Deviation Range

INITIAL OFF-NOMINAL ERRORS

x (m) -35.6 88.4 (-225., 129.)
y {m) -22.2 89.5 (-266., 81.)
2 (m) -5.2 36.3 (~61., Sk.)

V (m/s) .1 2.5 (6.0, 4.2)

Y (eg) .1 .9 (-1.3, 2.3)

¥ .deg) -.3 2.8 (=S.4, 4.7)
a (deg) -.9 1.3 (-2.¢, 2.6)

¢ (deg) -23.3 0.

T/1a (m/s ) - "7 .09 (-.17, .09)

FINAL OFF-N ° ", ERRORS (AT DECISION ALTITUDE)

x (m) -16.2 14.2 (-b2.4, 13.2)
¥y (m) 4.8 2.1 (-.6, 8.5)
Z (m) -.7 .5 (-1.4, .6)
V (m/s) .8 .6 (-.%, 2.1)
vy (deg) .0 .2 (-.6, .3)
¢ (deg) -.8 .3 (-1.4, .1)
Z (m/s) .12 .3 (-.54, .50)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT
a (deg) .9 h.1 (=k.1, 7.2)
¢ (deg) 21.6 .8 (19.6, 23.1)
T/m (n/s?) .18 .19 (-.17, .46)
EXTREME CONTROL RATE DURING EACH FLIGHT
(deg/s) 1.1 1.8 (-2.0, 5.0)
(deg/s -10.0 0.
/m (m/s .0 A (-.15, .15)

NUMBER OF UNACCEPTABLE FLIGHTS = O

TABLE 9.- Statistical Data From Flight Path 3B.
25 Landing Approaches. y=6°, 2=6.28 m/s, V_=15 knots
¥,=U[-180°, 180°], t,*75.0s, h,=1k.Tm, x --!35-
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Variable Mean Standard Deviation Range
INITIAL OFF-NOMINAL ERRORS
x (m) 186.0
y (m) 157.9
Zz (m) ~24.0
V (m/s) 1.4
Y (deg) -.2
v (deg) 2.1
a (deg) -.6
¢ (deg) o -12.2
T/m (m/s) .01
FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE)
x (m) -2.0 8.4 (-23 7, 12.4)
y (m) .3 .1 (.2, .5)
Z (m) 1.3 -8 (" 29 3. 0)
V (m/s) -.2 .5 (-1.1, 1 o)
v (deg) b .1 (-.0, .
y (deg) -1 .0 (-.1, - 1)
Z (m/s) .43 -1 (.05, .51)
EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT
) 16.7 .8 (3-7' 7-1)
) 4.3 0 (k.2, 4.3)
\/82) -.1k .15 (-.32, .34)
EXTREME CONTROL RATE DURING EACH FLIGHT
(deg/s) -1.0 .3 (-1.3, .5)
(deg/s 8.9 .0 (8.9, 8.9)
/m (m/s -.16 .01 (-.17, 0.15)
KRUMBER OF UNACCEPTABLE FLIGHTS = O
TABLE 10.- Statistical Data From Flight Path 2 With Variations in the

Aerodynamic Parameters.

25 Landing Approaches. y=3°, %23.2k m/s, V. w®15 knots,
¥,=170°, 165 ey h, =1k .6m, x £=-279.2. Random variation
of Approx tely + fOZ an Airc*aft Parameters and ¢ 5%
in Air Densit:.
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in a random variation in these parameters of about +10%. Air
density, as described in equation 7, was also given random variatior.
The multiplying coefficient, 1.22, of that equation was allowed to
vary normally with mean 1.22 and standard deviation of 00k, This
resulted in a random variation of air density of about 15% for any
particular altitude. These variations seemed only to prupagate into
the final errors in x, Z, and V and into the extreme control
excursions in angle of attack. Of these, only the variation in the
final altitude causes concern. It varies between .l and 2.L meters.
Since the sink rate is «bout 3.24 mete:s/second, it follows that

ais corresponds to an error of about .6 seconds . . time. The
control system appears to handle these normal variations and

uncertainties q ite well.



CONCLUSIONS

This paper describes an application of linear orptimal
regulator theory to a nonlinear simulation of an aircraft performing
a helical la.ding approach. The nonlinear equations of motion are
developed and are linearized (time varying coefficients) about a
quasi-steady helical flight path. The nominal state timpe histories
are given as explicit functions of time and a numerical method for
determining the constant control inputs is presented. Control of the
system to the nominal state trajectories is posed as a regulator problem
with time varying weighting ratrices in the cost functional. A method
of solving for the feedback gain matrix is reviewved. This theory is
then implemented in a simulation of Boeing 73:7-100, and system perfor-
mance vas measured for seven distinct approaches including flight
path angles (desc nt angles) of three and six degrees. On each
approacn, the aircraft was subject to large errors in initial wvalues
of state variables and to strong steady crosswinds. The system vas
also tested for sensitivity to normal variations in atmosphere and
to reasonable uncertainties in the parametric description of the
aircraft. Statistical data on 200 simulated landings is presented.
The control system performed very well on all the three degree
approaches and was reasonably insensitive 1o changes in the
atmosphere and to parametric changez in the aircraft mo. 1.
Performance, which was measured i~ .¢rms of terminal errors,

violation of design constraints, and passenger comfort, was not
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nearly as good on the six degree apprcaches. These approaches are
more dificult to execute since descent rate and roll angle are

ubled and the radius of the helix is halved. On the most
difficult of these six degree approaches, the total flight time vas
about sixty seconds, and performance was cdefinitely unacceptable.
Evidence is presented to support the contention that total flight
time is the critical factor and that performance on the six degree
paths could be greatly improved by starting the approach from a
kigher altitude. This hnypothesis needs to be further tested if
six degree approaches are a requirement.

The control system design method used in this study is relatively
straight forward and is easy to implement with the aid of a wmodern
computer. The only difficulty is in choosing the weighting matrices
for the cost functional. It was concluded in this paper that the
veights should be time varying for the particular control task
studied. This method should de extended to the more complex simula-
tion which includes both actuators and sensors and has six degree

of freedom dynamics before being implemented on the aircraft.
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APPENDIX A

JACOBIAN MATRICES USED IR THE
LINEARIZATIOR OF THE AIRCRAFT DYNAMICS

The aircraft dynamics were linearized about a nominal
state trajectory and nominal control time history. This wvas
done in order to apply linear optimal regulator theory to the
computation of the feedback gains. As is evident in eguation

(3) of the text, the Jacobian matrices

_ i |
A(t) = == and B(t) = i
are needed. They are
0 0 0
0 0 0
0 0 0
du
aD
- 13 /m + (t/m) sin a] 0 a
aL 4
- [T cos a + == cos ¢] /mV (L/mV) sin ¢ - sin a/V
oL ( )
3 sin ¢/(mV cos Yv) L/mV) cos ¢/cos Y 0
b -
2
where 9L T 3D 2 n
W"E5C TG v W™ C (5) (@ - %)
and
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(A1)



0 0 0 cos Y cos P

0 0 0 cos vy sin
0 0 0 sin v
3f _
35 0 0 0 2D/ (mV)
. v‘2
0 0 0 (T/m) sin a - g cos Y - (L/m) cos ¢
0 0 0 (L/m) sin ¢ / (V2 cos )
= V sin v cos $ -V cos Y sin §
- Vsinysiny V cos Y cos §
V cos Y 0
g cos Y 0
(A2)
(g/V) sin v o
(L/m) sin ¢ sin vy / (Vv cos? Y) 0

An assumption that atmospheric density is constant over the range
of altitude considered is incorporated into these equations. This
assumption is discussed in the text. It is not made in the non-

linear simulation which uses the feedback gains.
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